产品经理如何用数据驱动产品迭代?

访客4年前关于黑客接单451

出于种种原因,产品岗位会天然地带有主观性,运气好的话,感性与主观性能打造出不俗的产品亮点;运气不好的话,过度主观将给产品与用户带来不小伤害。那么我们该如何降低推理过程的主观性呢?笔者将告诉我们答案,详见本文。

产品经理如何用数据驱动产品迭代?

撕逼天天有,每天都很多,产品经理的日常~

撕逼无外乎意见不合,本质上是因为推理出来的产品方案没站住脚,其他团队成员从个人角度剖析之后,有了其他想法,所以开始了这场撕逼。

产品这个岗位本就带有很强的主观性(同是微信,如果不合作,我不太相信马化腾和张小龙两位产品大佬会做成一个样子),因此俞军老师将其定义为社会科学,并非物理化学这种自然科学,存在固有的规律,所以一千个人眼里有一千个理想产品的样子。

那么我们又该如何降低推理过程的主观性?数据也许是不错的 *** ,因为它不撒谎。

以电商APP的下单流程为例,说一说如何用数据来驱动一次产品迭代。

一、发现问题

问题来源一般有两种:

1. 用户侧

这应该是最主要的问题来源,经过市场验证后的声音,用户反馈、用户调研和问卷等。

2. 产品侧

相比于用户侧,问题少一点,但也同样重要。

「解决问题」是公认的产品经理核心能力,但我认为「发现问题」同样重要,我们也要注意从产品侧主动发现问题。

用户的嘴可能不会follow heart,但身体却很诚实,然后在数据库留下了一系列言行不一的行为轨迹,我们从中可以发现当前产品的问题,甚至有可能发现颠覆你认知的用户表现。

eg:

产品经理如何用数据驱动产品迭代?

*矩形高度代表人数

*百分比=从上一页面转化来的人数/上一页面人数

这是一款电商APP的下单路径转化漏斗,可以看出在详情页 → 下单页这个环节人数大幅下降,远低于其他环节的转化率,用户为什么进了详情页之后掉头就走了呢?

二、提出假设

无论用户侧还是产品侧的问题,我们得到的都是问题表象,需要找到可能的问题原因,然后依此提出针对性解决方案。

eg:

首先定位问题原因,提出我们的假设。

经过分析,认为当前的商品详情页的页面布局,无法突出商品价值,过于强调商品注意事项,导致用户未能真正感受到商品价值,反而被一堆注意事项吓退了。

接下来就要想解决方案,优化页面布局,突出商品价值,弱化注意事项,让用户放下戒备,放心购买。

三、确定评估指标 1. 指标类型

北极星指标

属公司战略级指标,基本由boss或产品高层制定,是长期目标,轻易不会变动。

方向指标

项目中的关键指标,用来衡量问题解决程度,与北极星指标正相关,也就是与产品大体目标一致,提升产品效用(对用户问题的解决程度)。

负面指标

项目中关键指标,用来衡量为了解决问题,而带来的负面影响程度,北极星指标负相关,与产品大体目标相悖,会降低产品效用。

注意:要提前设定好最差能接受的范围,就是这个负面指标跌到什么程度是不能接受的。

行为指标

非必需指标,大概就是某个页面的访问次数,按钮的点击率这种行为数据,基本用来分析背后的原因,不适合作为关键衡量指标(就是为了解决某个行为的问题的情况不算)

在项目中,通常用来衡量新版本上线效果的是方向指标和负面指标,北极星指标起到方向性作用,保证我们的大方向不会错,行为指标用来分析问题原因。

eg:

产品经理如何用数据驱动产品迭代?

在这个项目中,方向指标是要将详情页 → 下单页的转化率提升30%,从而提升订单量,最终实现利润增长,经分析对北极星指标有正向作用。

但是呢,优化方案中放大产品价值、弱化注意事项,用户可能会被误导消费,没有看到注意事项就下单了,导致商品到手之后不满意,最终结果是退货率增高。当然,我们肯定不能接受用户买完都退货了,所以要设定一个我们能忍受的底线,经过分析后,确定能忍受的更高退货率为10%,超出这个值成本就cover不住了。

四、增加埋点

指标已经确定好了,接下来就要让开发哥哥埋点了。

从指标出发梳理埋点,想验证这个指标,需要什么数据来支持,直接拿实例说吧。

eg:

产品经理如何用数据驱动产品迭代?

相关文章

数据分析在产品迭代前的意义

数据分析在产品迭代前的意义

数据,对数据的敏感度,数据分析能力在当下的生活工作中变得越来越重要,不只是数据分析师所应该掌握的独特技能。其实对于运营、产品等大多数工作岗位,数据分析能力都有其意义存在。今天就想和大家讨论一下数据分析...