什么是体积(电子为什么没有体积)大家对电子这个物理词语再熟悉不过了,目前对电子性质的研究依旧是前沿的课题。人类到目前为止还没有搞清电子的所有性质。
从道尔顿的原子论到电子云模型,物理学家对原子模型的研究将近100年。同时人类还研究了氢原子光谱,经历了莱曼系到巴耳末系再到韩福瑞系的历程。
人类对原子结构和电子的认识经历了稚嫩到成熟的过程。期间发明的许多思维方式和概念都是颠覆常识的。
今天讲的这些全都属于量子力学的范畴,首先需要读者把自己的常识思想放到一边,如果你带着宏观世界的定型思维来理解电子的运动,那注定是失败的。
而且解释电子的运动规律不可能通俗到每个人都能理解,毕竟这里面很多概念在实际生活中压根就没有遇见过。也无法找到相对应的日常实例加以辅助注解。
电子的形状是什么?
形状在描述有棱有角的宏观物体时,是完全适用的。但准确来说,电子并没有形状。电子属于基本粒子,也就是说电子没有内部结构,不可再分成更小的物质,或许说电子内部是未知的。
物理学家也管电子叫点粒子。点粒子指的是零维度,不占据空间的粒子。
我们都知道,一维是线,二维是面,三维是体。在三维空间内,维度每叠加一次,就是相邻的低维度的无数次叠加。比如无数个二维平面累积起来就构成了三维的立体。同理,0维度就是一个点,无数个0维度点构成了一维的线。所以0维度不具有长度,因为具有长度了,就不是0维了。这就像物理学中质点的概念,质点是存在的,但是质点有大小吗? 当然没有,质点只是一个概念而已。
当然,科学家说电子是点粒子,并不是说电子就是质点,如果我们不研究电子内部的结构,我们完全可以把电子当成0维的点粒子,并且它不占用空间。
有人可能会质疑我:你刚才不是都说了,电子是0维的点,怎么现在又讨论电子的大小呢?其实你已经陷入到宏观世界的误区中了。
电子是微观粒子,其波粒二象性很显著。电子有粒子性又有波动性,这里说的电子半径,指的是电子粒子性的一面。
其实波粒二象性可以这样理解。电子在不被测量时,既是波又是粒子。电子的波长很短时,其相邻波峰距离就短。如果波长极短,那么两个波峰就挨得极近,以至于我们很难分辨出两个波峰谁是谁了,那么这时候的波就更像是聚拢在一起的波包,这个波包就更像是个粒子。
举个例子,你拿起一条跳绳,使劲摇摆其中一端,导致跳绳形成波浪形,每个波的更高点就是波峰。如果再使劲摇动,波峰之间的距离会越来越短,也就是波长越来越短。如果我的劲足够大,导致跳绳波动的波长为0.001mm,那么每个波峰看起来就连在一起了,那么这时候跳绳就好像是一面绳墙,其波动性就不明显了。而我们测量电子半径就是测量它粒子性的一面。
丁肇中曾经就做过测量电子半径的实验。平时我们用电子轰击其他粒子来测它们的半径。当我们测量电子自身时,却没有更好的粒子用作测量,于是就只能用电子测量电子。发射电子去轰击被测量电子,利用散射测量电子占据的空间,这样就可以测量电子的半径。
可是实验结果很尴尬,如果我们发射的电子能量越低,其被测量的电子的半径就越大。如果发射的电子能量越大,其被测量电子的半径就越小。这是因为发射出的电子能量越高就会传递更多的能量给被测量电子,被测量电子吸收能量后,其波动频率就增加了,那么波长就变短了,更显得像个粒子,其半径更小。
不同能级的电子轨道,颜色越深,找到电子的概率越大
如果我们要测量更小半径的电子,就需要用同等量级波长大小的电子去轰击被测量电子,而同等量级大小的电子其波长就意味着更短,频率更大,那能量就更大。
现在就陷入死循环了。要测量电子更精确的半径,就需要能量更大的电子去轰击它,这导致被测量电子吸收能量后半径更小了,要想继续测量,就又得更大能量的电子轰击。逼得被测量电子的半径小到康普顿波长的下限了。所以我们现有的仪器测量出来的电子半径大概是10∧-15m。其电子的真实半径肯定比这个还小,所以在理论上,电子有可测量的半径。
同时,电子是波粒二象性的,它还有波动的一面。况且我们不能同时测量出电子的速度和位置,也就是不知道它下一秒出现在那,只能用概率描述出电子下一秒出现在某点的概率有多大。电子没有实在尺度,我们只能用概率波描述它们。在这种角度上来说,电子的体积就没有意义。
电子云
一提到自旋,很多人会想到地球自转等各种球体转动。但是电子的自旋和这些自转完全不一样,其意义很抽象。
我们知道,1905年,爱因斯坦发表了光量子假说,认为电子辐射出的能量不是连续的,是一份一份进行的。其辐射出的能量E=nhν(n取正整数,h是普朗克常数,ν是光子频率),所以每一份能量就是hν,辐射一份能量则n=1,辐射两份能量则n=2...以此类推。
之后,科学家发现电子还会产生磁场,那么就反推出电子有自旋。
一开始科学家抱着经典物理学的观点考虑电子自旋,首先就会问到它的自旋周期是多少?
这时候就尴尬了,压根就测量不了电子周期,因为电子是点粒子。最后物理学家弄明白了,电子的自旋没有周期一说,电子的自旋也是量子化的,是不连续的。估计很多人听糊涂了,因为这是全新的概念。
物理学家发现电子的自旋角动量是量子化的。前面我们已经说过了,量子化指的是非连续和基本量。如果用数学要表达这种量子化就首先需要找到一个基本量,比如hν,再在基本量上引人变量,比如普朗克公式E=nhν中的n。
什么是非连续呢?
我们可以说一条绳的长度是100米,这条绳有无数个点,每个点连一起就是连续不断的一条绳。从0到100米有无数个数分别对应无数个点。比如7.465161867...这个数就对应这条绳第七米到第八米之间的某一点。
如果我并不想表达出这条绳的所有点。我只想知道某一特定系列的点,那么这时候我该如何列公式来表达这些不连续的点呢?
其实在数学上可以随便找个常数充当基本量,比如这个常数是2。设这条线的某特定系列点的表达式x=2n,n作为变量,我可以规定它只能选取1-50之间的整数。这样x的值就是2,4,6....100了。
我也可以规定自变量n取1-50之间的半整数,这时候x=2n的值是3,5,7.....。这样就可以体现出不连续性了。基本量和变量如何规定,在于你所研究的问题性质来决定。
自旋角动量量子化意味着自旋不连续,那么自旋的数值也就不连续了。角动量表达式p=[J(J+1)]½ ћ (ћ是约化普朗克常数,其数值是h/2π)。
这里的 ћ就是基本量,J是变量。如果我限制J的取值范围,那么角动量表达式就可以体现出自旋角动量的不连续性,也就是量子化的体现,J取1/2就是电子的自旋角动量。如果J只能取半奇数(0.5,1.5等等),那么这种自旋的粒子就是费米子,电子,中子,质子等。如果J只能取整数,那么这种自旋的粒子就是玻色子,比如光子,胶子等。
这就是电子的自旋,它是微观粒子的内禀属性,并没有经典物理学的对应概念。我只能比较严肃地解释这种新概念了,因为完全没有旧观念可以帮助我们通俗化地理解它们。
现在很多产品都在朝着智能化的方向在发展,为大家的生活提供了很多便利。传统的门锁,大家都已经十分熟悉,需要使用钥匙插进锁眼中才能打开。进入到智能时代以来,其实一切都应该发生变革。最近国外一款新式智能门锁...
熟悉苹果的读者朋友们都知道,如果你需要购买下载苹果在线商店的内容,你就必须拥有一个 Apple ID。而 Apple ID 需要你使用电子邮件地址来注册。但是如果你的这一电子邮件地址不再有效(如雅虎)...
《学会学习》的作者是一名日本人。不得不说,日本人做事非常具有条理性,面对学习,竟然可以梳理出20多种不同的方法。我看完此书后,向大家推荐其中一种学习方法,叫做”剪报学习法“。因为它不仅勾起我儿时学...
很多关注电子烟、想要使用电子烟的人最关心的就是“电子烟与香烟的相似度”,电子烟和真烟抽起来有什么区别?接下来小编就为大家详细介绍一下。 电子烟和真烟抽起来有什么区别? 电子烟与真烟有什么区别...
商业汇票是什么(什么是电子商业汇票?)【什么是电子商业汇票?】 所谓电子商业汇票是由出票人以数据电文形式制作的,委托付款人在指定日期无条件支付确定的金额给收款人或者持票人的票据。简称电票。 【汇票...
电子商务英语怎么说(电子商务的发言英语怎么说)【常见的商务英语表达】 举个最具代表性的例子,在去年下半年高级考试的时候,口语题中,说有个超市要是变成24/7工作制,对员工有什么影响balabala的...