深入搜索引擎原理

访客4年前关于黑客接单462

之前几段工作经历都与搜索有关,现在也有业务在用搜索,对搜索引擎做一个原理性的分享,包括搜索的一系列核心数据结构和算法,尽量覆盖搜索引擎的核心原理,但不涉及数据挖掘、NLP等。文章有点长,多多指点~~

一、搜索引擎引题

搜索引擎是什么?

这里有个概念需要提一下。信息检索 (Information Retrieval 简称 IR) 和 搜索 (Search) 是有区别的,信息检索是一门学科,研究信息的获取、表示、存储、组织和访问,而搜索只是信息检索的一个分支,其他的如问答系统、信息抽取、信息过滤也可以是信息检索。

本文要讲的搜索引擎,是通常意义上的全文搜索引擎、垂直搜索引擎的普遍原理,比如 Google、Baidu,天猫搜索商品、口碑搜索美食、飞猪搜索酒店等。

Lucene 是非常出名且高效的全文检索工具包,ES 和 Solr 底层都是使用的 Lucene,本文的大部分原理和算法都会以 Lucene 来举例介绍。

为什么需要搜索引擎?

看一个实际的例子:如何从一个亿级数据的商品表里,寻找名字含“秋裤”的 商品。

使用SQL Like

select * from item where name like '%秋裤%'

如上,大家之一能想到的实现是用 like,但这无法使用上索引,会在大量数据集上做一次遍历操作,查询会非常的慢。有没有更简单的 *** 呢,可能会说能不能加个秋裤的分类或者标签,很好,那如果新增一个商品品类怎么办呢?要加无数个分类和标签吗?如何能更简单高效的处理全文检索呢?

使用搜索引擎

深入搜索引擎原理

 

答案是搜索,会事先 build 一个倒排索引,通过词法语法分析、分词、构建词典、构建倒排表、压缩优化等操作构建一个索引,查询时通过词典能快速拿到结果。这既能解决全文检索的问题,又能解决了SQL查询速度慢的问题。

那么, *** 是如何在1毫秒从上亿个商品找到上千种秋裤的呢,谷歌如何在1毫秒从万亿个网页中找寻到与你关键字匹配的几十万个网页,如此大的数据量是怎么做到毫秒返回的。

二、搜索引擎是怎么做的?

Part1. 分词

分词就是对一段文本,通过规则或者算法分出多个词,每个词作为搜索的最细粒度一个个单字或者单词。只有分词后有这个词,搜索才能搜到,分词的正确性非常重要。分词粒度太大,搜索召回率就会偏低,分词粒度太小,准确率就会降低。如何恰到好处的分词,是搜索引擎需要做的之一步。

正确性&粒度

  • 分词正确性
  • “他说的确实在理”,这句话如何分词?
  • “他-说-的确-实在-理” [错误语义]
  • “他-说-的-确实-在理” [正确语义]
  • 分词的粒度
  • “中华人民共和国宪法”,这句话如何分词?
  • “中华人民共和国-宪法”,[搜索 中华、共和国 无结果]
  • “中华-人民-共和国-宪法”,[搜索 共和 无结果]
  • “中-华-人-民-共-和-国-宪-法”,[搜索其中任意字都有结果]

分词的粒度并不是越小越好,他会降低准确率,比如搜索 “中秋” 也会出现上条结果,而且粒度越小,索引词典越大,搜索效率也会下降,后面会细说。

如何准确的把控分词,涉及到 NLP 的内容啦,这里就不展开了。

停用词

很多语句中的词都是没有意义的,比如 “的”,“在” 等副词、谓词,英文中的 “a”,“an”,“the”,在搜索是无任何意义的,所以在分词构建索引时都会去除,降低不不要的索引空间,叫停用词 (StopWord)。

通常可以通过文档集频率和维护停用词表的方式来判断停用词。

词项处理

词项处理,是指在原本的词项上在做一些额外的处理,比如归一化、词形归并、词干还原等操作,以提高搜索的效果。并不是所有的需求和业务都要词项处理,需要根据场景来判断。

1.归一化

  • USA - U.S.A. [缩写]
  • 7月30日 - 7/30 [中英文]
  • color - colour [通假词]
  • 开心 - 高兴 [同义词扩展范畴]

这样查询 U.S.A. 也能得到 USA 的结果,同义词可以算作归一化处理,不过同义词还可以有其他的处理方式。

2.词形归并(Lemmatization)

针对英语同一个词有不同的形态,可以做词形归并成一个,如:

  • am, are, is -> be
  • car, cars, car's, cars' -> car
  • the boy's cars are different colors -> the boy car be different color

3.词干还原(Stemming)

通常指的就粗略的去除单词两端词缀的启发式过程

  • automate(s), automatic, automation -> automat.
  • 高高兴兴 -> 高兴 [中文重叠词还原]
  • 明明白白 -> 明白

英文的常见词干还原算法,Porter算法。

Part2、倒排索引

要了解倒排索引,先看一下什么是正排索引。比如有下面两句话:

  • id1, “搜索引擎提供检索服务”
  • id2, “搜索引擎是信息检索系统”

正排索引

正排索引就是 MySQL 里的 B+ Tree,索引的结果是:

  • “搜索引擎是信息检索系统” -> id2
  • “搜索引擎提供检索服务” -> id1

表示对完整内容按字典序排序,得到一个有序的列表,以加快检索的速度。

倒排索引

之一步 分词

  • “搜索引擎-提供-检索-服务” -> id1
  • “搜索引擎-信息-检索-系统” -> id2

第二步 将分词项构建一个词典

  • 搜索引擎
  • 提供
  • 检索
  • 服务
  • 信息
  • 系统

第三步 构建倒排链

  • 搜索引擎 -> id1, id2
  • 提供 -> id1
  • 检索 -> id1, id2
  • 服务 -> id1
  • 信息 -> id2
  • 系统 -> id2

由此,一个倒排索引就完成了,搜索 “检索” 时,得到 id1, id2,说明这两条数据都有,搜索 “服务” 只有 id1 存在。但如果搜索 “检索系统”,此时会先建搜索词按照与构建同一种策略分词,得到 “检索-系统”,两个词项,分别搜索 检索 -> id1, id2 和 系统 -> id2,然后对其做一个交集,得到 id2。同理,通过求并集可以支持更复杂的查询。

倒排索引到此也就讲清楚了吧。

存储结构

深入搜索引擎原理

 

以 Lucene 为例,简单说明一下 Lucene 的存储结构。从大到小是Index -> Segment -> Doc -> Field -> Term,类比 MySQL 为 Database -> Table -> Record -> Field -> Value。

Part 3、查询结果排序

搜索结果排序是根据 关键字 和 Document 的相关性得分排序,通常意义下,除了可以人工的设置权重 boost,也存在一套非常有用的相关性得分算法,看完你会觉得非常有意思。

TF-IDF

TF(词频)-IDF(逆文档频率) 在自动提取文章关键词上经常用到,通过它可以知道某个关键字在这篇文档里的重要程度。其中 TF 表示某个 Term 在 Document 里出现的频次,越高说明越重要;DF 表示在全部 Document 里,共有多少个 Document 出现了这个词,DF 越大,说明这个词很常见,并不重要,越小反而说明他越重要,IDF 是 DF 的倒数(取log), IDF 越大,表示这个词越重要。

TF-IDF 怎么影响搜索排序,举一个实际例子来解释:

假定现在有一篇博客《Blink 实战总结》,我们要统计这篇文章的关键字,首先是对文章分词统计词频,出现次数最多的词是--"的"、"是"、"在",这些是“停用词”,基本上在所有的文章里都会出现,他对找到结果毫无帮助,全部过滤掉。

只考虑剩下的有实际意义的词,如果文章中词频数关系: “Blink” > “词频” = “总结”,那么肯定是 Blink 是这篇文章更重要的关键字。但又会遇到了另一个问题,如果发现 "Blink"、"实战"、"总结"这三个词的出现次数一样多。这是不是意味着,作为关键词,它们的重要性是一样的?

不是的,通过统计全部博客,你发现 含关键字总博客数: “Blink” < “实战” < “总结”,这时候说明 “Blink” 不怎么常见,一旦出现,一定相比 “实战” 和 “总结”,对这篇文章的重要性更大。

BM25

上面解释了 TF 和 IDF,那么 TF 和 IDF 谁更重要呢,怎么计算最终的相关性得分呢?那就是 BM25。

BM25算法,通常用来作搜索相关性平分。一句话概况其主要思想:对Query进行语素解析,生成语素qi;然后,对于每个搜索结果D,计算每个语素qi与D的相关性得分,最后,将qi相对于D的相关性得分进行加权求和,从而得到Query与D的相关性得分。

BM25算法的一般性公式如下:

深入搜索引擎原理

 

其中,Q表示Query,qi表示Q解析之后的一个语素(对中文而言,我们可以把对Query的分词作为语素分析,每个词看成语素qi。);d表示一个搜索结果文档;Wi表示语素qi的权重;R(qi,d)表示语素qi与文档d的相关性得分。

其中 Wi 通常使用 IDF 来表达,R 使用 TF 来表达;综上,BM25算法的相关性得分公式可总结为:

深入搜索引擎原理

 

BM25 通过使用不同的语素分析 *** 、语素权重判定 *** ,以及语素与文档的相关性判定 *** ,我们可以衍生出不同的搜索相关性得分计算 *** ,这就为我们设计算法提供了较大的灵活性。

Part 4、空间索引

在点评口碑上,经常有类似的场景,搜索 “1公里以内的美食”,那么这个1公里怎么实现呢?

在数据库中可以通过暴力计算、矩形过滤、以及B树对经度和维度建索引,但这性能仍然很慢(可参考 为什么需要空间索引 )。搜索里用了一个很巧妙的 *** ,Geo Hash。

深入搜索引擎原理

 

如上图,表示根据 GeoHash 对北京几个区域生成的字符串,有几个特点:

  • 一个字符串,代表一个矩形区域
  • 字符串越长,表示的范围越精确 (长度为8时精度在19米左右,而当编码长度为9时精度在2米左右)
  • 字符串相似的,表示距离相近 (这就可以利用字符串的前缀匹配来查询附近的POI信息)

Geo Hash 如何编码?

地球上任何一个位置都可以用经纬度表示,纬度的区间是 [-90, 90],经度的区间 [-180, 180]。比如天安门的坐标是 39.908,116.397,整体编码过程如下:

一、对纬度 39.908 的编码如下:

  1. 将纬度划分2个区间,左区间 [-90, 0) 用 0 表示,右区间 [0, 90] 用 1 表示, 39.908 处在右区间,故之一位编码是 1;
  2. 在将 [0, 90] 划分2个区间,左区间 [0, 45) 用 0 表示,右区间 [45, 90] 用 1 表示,39.908处在左区间, 故第二位编码是 0;
  3. 同1、2的计算步骤,39.908 的最后10位编码是 “10111 00011”

二、对经度 116.397 的编码如下:

  1. 将经度划分2个区间,左区间 [-180, 0) 用 0 表示,右区间 [0, 180] 用 1 表示,116.397处在右区间, 故之一位编码是 1;
  2. 在将 [0, 180] 划分2个区间,左区间 [0, 90) 用 0 表示,右区间 [90, 180] 用 1 表示,116.397处在右区间,故第二位编码是 1;
  3. 同1、2的计算步骤,116.397 的最后6位编码是 “11010 01011”

三、合并组码

  1. 将奇数位放经度,偶数位放纬度,把2串编码组合生成新串:“11100 11101 00100 01111”;
  2. 通过 Base32 编码,每5个二进制编码一个数,“28 29 04 15”
  3. 根据 Base32 表,得到 Geo Hash 为:“WX4G”

即最后天安门的4位 Geo Hash 为 “WX4G”,如果需要经度更准确,在对应的经纬度编码粒度再往下追溯即可。

附:Base32 编码图

深入搜索引擎原理

 

Geo Hash 如何用于地理搜索?

举个例子,搜索天安门附近 200 米的景点,如下是天安门附近的Geo编码

深入搜索引擎原理

 

搜索过程如下:

  1. 首先确定天安门的Geo Hash为 WX4G0B,(6位区域码约 0.34平分千米,约为长宽600米区域)
  2. 而6位编码表示 600 米,半径 300 米 > 要求的 200 米,搜索所有编码为 WX4G0B 的景点即可
  3. 但是由于天安门处于 WX4G0B 的边缘位置,并不一定处在正中心。这就需要将 WX4G0B 附近的8个区域同时纳入搜索,故搜索 WX4G0B、WX4G09、WX4G0C 一共9个编码的景点
  4. 第3步已经将范围缩小到很小的一个区间,但是得到的景点距离并不是准确的,需要在通过距离计算过滤出小于 200 米的景点,得到最终结果。

由上面步骤可以看出,Geo Hash 将原本大量的距离计算,变成一个字符串检索缩小范围后,再进行小范围的距离计算,及快速又准确的进行距离搜索。

Geo Hash 依据的数学原理

深入搜索引擎原理

 

如图所示,我们将二进制编码的结果填写到空间中,当将空间划分为四块时候,编码的顺序分别是左下角00,左上角01,右下脚10,右上角11,也就是类似于Z的曲线。当我们递归的将各个块分解成更小的子块时,编码的顺序是自相似的(分形),每一个子快也形成Z曲线,这种类型的曲线被称为Peano空间填充曲线。

这种类型的空间填充曲线的优点是将二维空间转换成一维曲线(事实上是分形维),对大部分而言,编码相似的距离也相近, 但Peano空间填充曲线更大的缺点就是突变性,有些编码相邻但距离却相差很远,比如0111与1000,编码是相邻的,但距离相差很大。

深入搜索引擎原理

 

除Peano空间填充曲线外,还有很多空间填充曲线,如图所示,其中效果公认较好是Hilbert空间填充曲线,相较于Peano曲线而言,Hilbert曲线没有较大的突变。为什么GeoHash不选择Hilbert空间填充曲线呢?可能是Peano曲线思路以及计算上比较简单吧,事实上,Peano曲线就是一种四叉树线性编码方式。

Part 5、数值索引

Lucene的倒排索引决定,索引内容是一个可排序的字符串,如果要查找一个数字,那么也需要将数字转成字符串。这样,检索一个数字是没问题的,如果需要搜索一个数值范围,怎么做呢?

要做范围查找,那么要求数字转成的字符串也是有序并单调的,但数字本身的位数是不一样的,最简单的版本就是前缀补0,比如 35, 234, 1 都补成 4 位,得到 0035, 0234, 0001,这样能保证:

数字(a) > 数字(b) ===> 字符串(a) > 字符串(b)

这时候,查询应该用范围内的所有数值或查询,比如查询 [33, 36) 这个范围,对应的查询语法是:

33 || 34 || 35

嗯看起来很好的解决了范围查询,但是,这样存在3个问题:

相关文章

黑帽行业被敲诈的原理和解决办法

黑帽行业被敲诈的原理和解决办法

博主亲自一对一教学黑帽SEO优化,包教会、包上排名、技术包更新、不限制,学费8500元,加微信/QQ:394062665! 做黑帽SEO的朋友一定有这样的经历,突然有人加你QQ,然后跟你说,他们是负...

三原色是什么颜色(三原色是什么原理)

三原色是什么颜色(三原色是什么原理)

小学美术课告诉我们三原色是红黄蓝,初中物理课又告诉我们光的三原色是红绿蓝,为什么偏偏都是三种?这两套三原色为什么又不一样?它们之间有关系吗?今天我们就来解答一下这个问题。 光学三原色:色光加色混...

想要打动用户,先弄清流量运转背后的道理

想要打动用户,先弄清流量运转背后的道理

本日主题是如何引爆社交换传?以下我主要从勾当、心理学设计,尚有口碑等几个角度跟各人聊聊,奈何在做勾当和内容的时候冲动消费者? 在移动互联网时代流量加倍的碎片化,场景变得很是的短促和乐趣导向,所以我们需...

为什么井盖是圆的(井盖是圆的的原理)

我要去某大公司参加面试,该公司面试官提出了一个非常经典的问题:下水道的井盖为什么是圆的? 以下就是本人和面试官的对话,据内部外部可靠不可靠小道大道八卦九卦消息透露,该公司自从约见了我面试之后,就把这...

股票为什么会涨跌(股票为什么会涨跌原理)

股票为什么会涨跌(股票为什么会涨跌原理)

股票会涨会跌大家都知道,但对于股票为什么会涨跌?其涨跌原理是什么?大家又知道吗? 股票为什么会涨跌? 一般来说,股票的涨跌是和大盘有着密切的关系。大盘的涨跌在很大程度上左右着个股的走势。影响大盘涨...

搜索引擎优化原理破解(上首页排名的无非就是

搜索引擎优化原理破解(上首页排名的无非就是

为什么你的全部是原创,天天发外链交换友情链接,但就是没有哪些抄袭来的网站排名好,为什么排名一直上不了首页,那么今天我就和大家来说说搜索引擎优化的原理以及搜索引擎优化的方法。 并不是说,你外链发的...